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Hydrogen Atom Loss from the Benzene Cation. Why Is the Kinetic Energy Release so
Large?"
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The kinetic energy release distributions (KERDs) associated with the hydrogen loss from the benzene cation
and the deuterium loss from the perdeuteriobenzene cation have been remeasured on the metastable time
scale and analyzed by the maximum entropy method. The experimental kinetic energy releases are larger
than expected statistically, in contradistinction to what has been observed for-thér&ymentations of the
halogenobenzene cations. H(D) loss froptgr (CsDs") occurs via a conical intersection connecting #he

and?A; electronic states. Two models are proposed to account for the experimental data: (i) a modified
orbiting transition state theory (OTST) approach incorporating electronic nonadiabaticity; (ii) an electronically
nonadiabatic version of the statistical adiabatic channel model (SACM) of Quack and Troe. The latter approach
is found to be preferable. It leads to the conclusion that the larger the energy stored in the transitional modes,
which partly convert to the relative interfragment motion, the shorter the value of the reaction coordinate at
which the adiabatic channels cross, and the larger the probability of undergoidg.the 2A; transition

required for hydrogen loss.

I. Introduction The present contribution does not focus on the rate constant,
The unimolecular dissociation of the benzene ion into a but on the KERD for the H-loss from the benzene cation,

phenyl ion and a hydrogen atom has always been somewhat of n 5 5 5

a mystery. The reaction presents no reverse activation barrierCeHs [(Tch) 7 ( B, orAy) —

and hence_ no obvious transition state. Its rate constant and those C6H5+[ﬂ6] (1A1) + H[1s,] (25) (1.1a)

of competitive pathways have received extensive attehtién

and RRKM calculations with a tight transition state have been and for the equivalent reaction for the perdeuterated species,

found to account for the experimental H-loss d&td3 Klip-

penstein used variational transition state theory (VTST) to model CGD6+ — CGDSJr +D (1.1b)

the reactio®® and determined the electronic energy curves as a

function of the hydrogencarbon distanc&® One of the essential characteristics of this fragmentation is its
However, the distribution of the released translational kinetic inherently electronic nonadiabatic nature due to the difference

energy (KERD) has also been measufédt25 Jarrold et af in the electronic configurations of the reactant and of the product

concluded that a transition state switching model was able to ground states, as established by Klippengfeiand later

account for the rate constant but not for the KERD. Kibtsed confirmed by independent ab initio calculaticiisA positive

his version of phase space theory and reached a similarhole is located in ther shell of the benzene ion in its ground

conclusion. state, whereas thre shell of the phenyl cation is fully occupied
Lifshitz?® generalized the problem and noticed that transla- in the ground stat&3839Such a situation necessarily leads to

tional energy releases for H atom losses are usually much greatea conical intersection between the two potential energy surfaces.

than expected from phase space thégdz”30 By a joint experimental and theoretical study, the present work
It has been found by us in a previous stéidpat for reactions aims at relating the observed characteristics of the KERD to

leading to the loss of a hydrogen atom, the orbiting transition the peculiar properties of the reaction, especially its electronic

state theory (OTSP§3+37 loses any validity, at least at energies nonadiabaticity.

representative of mass spectrometric experimentation with sector An interesting element of appreciation results from a com-

instruments. The reason for this failure can be traced back to parative study of the KERD measured for various reactions

the breakdown of two essential assumptions of OTST: (i) the

ion-induced dipole approximation postulated in the Langevin C6H5XJr — C6H5Jr + X (1.2)

model is not valid at the transition state and (ii) the angular

and radial degrees of freedom can no longer be adiabatically The maximum entropy methéti4? analyzes KERDs by com-

separated as the reaction is not rotationally adiabatic. Therefore paring them with a purely statistical distribution computed from

no quantitative study based on phase space theory is possibléhe density of states of the dissociation fragments. Therefore,

for hydrogen-loss reactions. the same statistical distribution corresponds to all fragmentations
* Part of the “Chava Lifshitz Memorial [ssue” into a phenyl ion and an atom X. However, these dissociations

* Corresponding author. E-mail: Bernard.Leyh@ulg.ac.be. Telephone: Proceed in an entirely different way depending on Whe_ther X
++32-4-3663425. Fax++32-4-3663413. is a hydrogen or a halogen atom. Wher=X{ or Br, the reaction
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mechanism is known to be electronically adiabatic. Furthermore, TABLE 1: Average Kinetic Energy Releasel¢[Jand
the average translational energy relea&gis less than the  Ergodicity Index F at the Average Energy(E[3

estimateé[d derived from a purely statistical theat§/44Finally, translational

it has been shown in a recent study that at low total energies, energy (keV) [EfeV] ROED [eV] F(ED[%]
OTST is valid when X is a halogefl.We shall show in this CeHs™ + H 2 121  017Z 0005 91+ 2
paper that the characteristics of reaction 1.2 whesr Xl are CeHst +H 5 1.27  0.194-0.005  87+2
radically different with respect to the following features: (i) CeHs"+H 8 130  0.224£0.007  76+3
the reaction is electronically nonadiabatic, (i) OTST is invalid, GePs™ +D 2 158  0.179:0.004 96+ 1
and (iii) the actual average translational energy reléasSks &B? ig g i:gg 8:38815 8:882 géii

larger than the statistical estima9.
The paper is organized as follows. The experimental technique, * The second column indicates the fragment ion translational energy
and the maximum entropy method are summarized in sections'” the laboratory reference frame.

Il and Ill, respectively. The results are presented in section IV. sampled by both isotopomers are clearly different. The ther-

tShecti?n ?/ de_als witrzquéart]_tq{n a?tiaiti?tfalcula?ons'Konct?rningt] mochemical dissociation threshold measured with respect to the
€ electronic nonadiabaliCity of the utle reaction. An attemp ground state of the neutral molecule has been taken equal to
to incorporate the nonadiabatic mechanism in OTST is dlscussed13 03 eV for reaction 1.5aand to 12.98 eV for reaction 1.8

in section VI. Section VIl analyzes in detail the consequences

of _elect_ronic nonadiabati_city in the framework of_ the statistical ||} Maximum Entropy Method

adiabatic channel formalism (SACMJ.4” Concluding remarks B _ )

are formulated in section VIILI. Let us denote by?(¢|E) the probability of releasing a relative
kinetic energy on the dissociation fragments when the system

Il. Experiment total energy is equal t&. Since the considered system is the

. L air of fragmentsk is measured in this paper, unless otherwise
The experimental setup used to measure kinetic energy releasgateq with respect to the lowesttG+ + H or CsDs* + D
distributions is a forward geometry (EB) sector mass spectrom- dissoc’iation asymptote.

eter. The spectrometer includes the following: (i) anion source  tha maximum entropy method compares an experimental

where benzene molecules are ionized by electron impact andgjgyripytion, hereP(e|E), with the corresponding full statistical
accelerated to keV translational energies; (i) a first field free istripution. called the prior distribution. In the field of

region; (iii) an electrostatic sector; (iv) a second field free region; nimolecular dissociations, the statistical situation arises when

(v) a magnetic s_ector; (vi) an ion detec;or. . the ergodicity assumption of statistical theories is fulfilled: all
The accelerating voltage scan technique makes possible 10,64y ct quantum states are equally probable. Therefore, the prior
record the parent ion spectrum of all metastable dissociations §istripution PO(¢|E) is proportional to the density of states

Iea(_jing to a selected fragmen@ ion in the first field-free corresponding to a translational energyat a total energy
region#®-%0 The release of translational energy upon fragmenta- [E35,40-42,58,59

tion broadens the recorded peaks. As instrumental broadening
also takes place, a preliminary deconvolution step is reqdfred.

Then, a kinetic energy release distribution can be deduced from
the deconvoluted peak by a differentiation procedure and a
change of variables from the laboratory to the center-of-mass,;nare NO(E)
reference framel~52 Angular discrimination effects are negli-

gible in the present case, so that more elaborated data

—56 i . . . . L
treatments™>° are not .requwed.. . 0 dimensional motion is proportional /2
Benzene (commercially available from Merck with 99.9% If a dynamical constrainfA(¢) prevents phase space from

purity for CeHe, and from Aldrich with 98% purity for €Dg) being fully exploredP(e|E) will be different fromP°(¢|E). The
was used without further purification. In the spectrometer source, gistihytion that accounts for this constraint but is otherwise of

the kinetic energy of the ionizing electrons is equal to 70 €V avimum entropy can be related BS(¢|E) by the following
and the emission current is set at 48. The electrostatic equatiod® 42

analyzer exit slit §-slit) is closed to 0.25 mm to reach an energy
resolutionAE/E of 1073, — 0

In this setup, dissociations are sampled in a given time P(e|E) = P*(¢|E) exp[~44(E) — A(E) Ale)]  (3.2)
window defined by the entrance tima) into, and the exit time
(r2) out of the first field free region. Accordingly, the total
energy distribution of the parent ions is given by the following
transmission functiof(E)

E—e
PO(GlE) = NO(E)€1/2 0 ProErod) Puin(E — € = Egp) d(ESrot

1)

is a normalization factorpyi, is the vibrational
density of states of the fragmengsy: is their rotational density
of states, and where the density of translational states for a three-

wherelp ensures normalization arids the Lagrange multiplier
conjugated to the constraint. In the general formalism, a sum
of termsYiAiAi(e) is used in eq 3.2%-80but in many instances,
the introduction of a single constraint has been found to be
sufficient#3.44.6+-64

T(E) = N [exp(— k(E)ry) — exp(= k(E)7)IR(E) (2.1) The distributiorP(e) that can be compared to the experimental

data is an average &f(¢|E) over the total energy distribution

whereN is a normalization factok(E) is the dissociation rate ~ T(E)
constant, whose variation with internal energy is available for
CeHg 347911121417 and GDg*.121415R(E) is the branching P(e) = [ PYIE) exp[- A,(E) — A(E) A(e )] T(E) dE
ratio for the hydrogen loss chanriél.To sample different ¢ (3.3
internal energy ranges, three translational energies of the ionic
fragment (2, 5, and 8 keV in the laboratory frame) were selected. Similarly, P%¢) is defined as the average Bi(¢|E) over T(E).
Average internal energies (measured from the lowest H(D)-loss Equation 3.3 is then fitted to the experimental distribution in
asymptote) are summarized in Table 1. The energy rangesorder to obtaimt(E) and A(e).
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Figure 1. Left axis, solid line: experimental KERD for Hs"™ — Figure 2. Solid line: experimental KERD for gt — CsHs™ + H

CsHs™ + H (a) and GDs¢" — CsDs™ + D (b) for a fragment ion (a) and GDs" — CsDs' + D (b) for a fragment ion translational energy
translational energy equal to 8 keV in the laboratory reference frame. equal to 2 keV in the laboratory reference frame. D_ashed_line: prior
Dashed line: prior KERDP%(¢), computed for the same total energy KERDs P%¢) computed for the same total energy distributidif).

distribution T(E). Right axis, full circles: surprisdi(e). Dotted line: Dotted line: fit to the experimental KERD using eq 3.3 witfe) = e.
surprisal fit. Typical error bars are provided. Large uncertainties in the Typical error bars are given at only two kinetic energies in order not
surprisal at large result from the division by small values &) to overcrowd the figure.

(see eq 3.4).

. ) . results at the average internal energsf,] as already observed
A visual way to estimaté\(e), if Ao and/ are assumed tobe  j, the analysis of the pyridine dissociati&hThe fitted value

independent of, is to compute the average surpriskk), of A at this energy is therefore especially robust and will be

resulting from the discrepancies between the experimental and, ;g thereafter to calculate the average kinetic engfggnd

the prior distribution the ergodicity indexr. Three values o have been deduced,
T N corresponding to the thre&lvalues associated with experi-
[(€) = In[P~(e)/P(e)] ~ Ay + AA(e) (3.4) ments at, respectively, 2, 5, and 8 keV (see section Il and Table

. ) . . 1). In an alternative data treatment procedure, the KERDs
and to find 6t1he functional form of\(¢) that linearizes the  corresponding to these three energy ranges have been fitted using
surprisall(e). o _ a single parametric linear functigifE), by minimizing the sum

The entropySof a distribution is directly linked to the number ¢ iheir respective chi-squareg. A(E) is found to be negative
of configurations that give rise to this distribution. Hence, the 5, decreasing upon increasiBgAs an example, the experi-
prior distribution, i.e., the most statistical distribution, corre- mental (2 keV) and fitted data are compared in Figure 2.
e e B P e once bonen & Average Kinetc Enray and Ergodiy Index. e
thel plrior )émd the actual entro%ies is ! w A(E) has been obtained, the average translational energy release
at a given energ)e can be calculated from the maximum

DS(E) = j;E P(¢|E) In [P(e|E)/P%e|E)] de = entropy equation:

— A(E) — A(E) [A(e ) (3.5) RIE) = ﬁf ePY€|E) exp[—A,(E) — A(E)A(e )] de  (4.1)

The entropy deficiency leads to another essential parameter: the ) ) N .
ergodicity index The resulting curve is drawn in Figure 3. In addition, for each

individual measurement at a given acceleration voltage, the value
F(E) = exp[-DS(E)] (3.6) of [¢[Jis particularly reliable aE = [EL] Figure 3 and Table 1
provide these data. Also represented is the statistical expectation
which is an upper bound for the ratio between (i) the phase [4[9, calculated as the first moment of the prior distribution
space volume effectively explored during the reaction and (ii) P%¢|E). Clearly, resulting from the negative value bf the
the phase space volume available for the system at the energylynamics leads to a larger translational energy release than the
E.4165This parameter thus measures to what extent the reactionstatistical estimate when the released atom is either H or D.

is ergodic. The reverse situation is observed when X is a halogen &tdé.
These pointsé[([E[) are compatible with other metastable
IV. Results data available in the literatufel 2566 even though no precise
A. Kinetic Energy Release Distributions and Surprisal information is provided concerning the energy domain reached

Fits. Experimental KERDs are displayed in Figure 1 with the in those experiments. The value found by Moon ef%and
corresponding prior distributions. We tried to linearize the mentioned in Figure 3, corroborates the large increase(of
surprisall(¢) using various powers afand found that the best ~ With the total energyE.

fit simply occurs forA(e) = € as shown in the figure. This is in An additional measurement has been performed gbsC

contrast with nearly all previous studi#s!3446L.63yhich had by dissociative photoionization using the Ne(l) resonance line

observed a constraint equal ¢§2 with a retarding potential devic®:6467.68At E = 1.6 eV, &[]
Fitting the experimental data using either a consfant a is found to be equal to 0.20 eV, a value comparable with the

linear variation ofi as a function of leads to nearly identical  metastable data (Figure 3). Such measurements are, however,
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Figure 3. Average kinetic energy releas&(E). Full circles: GHs"
=+ H (this work, atE = [EOfor each experimental set of data). Full I T T T T I T |

triangle: GHs* + H (ref 66). Open circles: £Ds* + D (this work, at 19 20 21 22 23 24 25 28
E = [Elfor each experimental set of data). Open hourglas®sC+ A
D (this work, atE = [E[Tor the dissociative photoionization experiment Ten (A)

with Ne(l)). Crosses: g5+ X (X =Cl, Br, I) (ref 43 and 44). The  Figure 4. CASSCF(5,6)-6-31G(d) ab initio calculations of the potential
dashed (reaction 1.1.a) and daslotted (reaction 1.1.b) lines cor- energy curves of gs* along the G-H coordinate C,, point group)
respond to a fit with a commoi(E) for the three internal energy ranges,  for the 2A,, 2B;, and 2A; states in the region where nonadiabatic
with A(e) = € (see text). The solid and dotted lines represent the first interactions take place. Geometry optimization for the remaining
moment of the prior distributionlé(%(E), for the nondeuterated and  coordinates has been performed for each individual electronic state.
for the perdeuterated species, respectively.

increases continuously as a function of the reaction coordinate.
- N o The aromatic cycle is nearly symmetrical in this state. The angle
carries only 2% of the total kinetic energy relgqse. o at the dehydro carbon ranges between 120 and.IR3s

In Tablg 1, we see that energy flows quite eﬁ|C|ent.Iy between ground state correlates diabatically with excited fragments,
the reaction coordinate and the bath of internal oscillators: the CeHs' (A7) + H (2S)

T . " .

ergodicity index,F (eq 3.6),h|s equa!) tof 7-590%+f(_)r QiHeh_a:] The next higher electronic state belongs todBerepresenta-
E~ 125 Ie\(;. It er\]/en reac esI 9@5(/;’ or Q[r)]ﬁ hlons whic tion. Its potential energy curve is nearly parallel to that of the
are sampled, in the metastable window, at higher enegy (25, state and is consistently located slightly above it. Its

1.65 eV).F is an upper bound because it is insensitive t0 any oqjilibrium geometry is characterized by a shortening of the

restriction on phase space sampling that does not affect they,, cc honds that are parallel to the symmetry axis, with the
KERD (e.g., the flow of vibrational energy among oscillators).

anglea ranging between 124 and 125

At larger values of the reaction coordinate, the potential
energy curves of these two states are crossed by tha2f a
state, whose energy is nearly constant and which diabatically

There is an extensive literature dealing with the electronic correlates with ground-state fragmentgHg"™ (*A1) + H (2S)
structure of the benzene cation. Most of it concerns the static (Figure 4). This type of crossing is termed a conical intersection.
and dynamic JahnTeller effects that take place in the Inthe?A; state, the cycle deforms and adopts a geometry similar
neighborhood of the equilibrium geometry. However, the to that of the phenylion fragment, with a particularly large value
problem that has to be dealt with here concerns the nonadiabatidor the anglen, which now ranges between 142 and 147he
interaction that is encountered as one of the CH bonds is %A, and?A; states were calculated to cross at a CH distance of
stretched and only the relevant portion of the reaction path has2.37 A with the 6-31G(d) basis set and at 2.35 A with the 6-31G-
been studied. Complete active space self-consistent field (d,p) basis set. This distance is compatible with Klippenstein's
[CASSCF(5, 6)] calculations were carried out with a 6-31G(d) calculations that give a CH distance of 2.25 A at the intersection
basis set of atomic orbitals (102 basis functions). As a check, betweer?B; and?A;.2°
some portions of the potential energy surfaces were recalculated Of prime interest in the dissociation mechanism is the conical
with the somewhat larger basis set 6-31G(d,p). The occupiedintersection that connects tR&, and?A; states. ThéB; state
and unoccupied spaces consisted each ofoofeg) and twos plays no role in the dissociation dynamics of reaction 1.1.
(b; and @) molecular orbitals. A total number of 210 config- However, since its energy is close to that of #e state, this
uration state functions were generated. Three low-lying elec- quasi-degeneracy considerably complicates the ab initio calcula-
tronic states3A,, 2A;, and?B;) have been studied. Note that tions by creating instabilities and convergence difficulties.
Klippensteiri® focuses on théB; and ?A; states. Geometry When the CH distance is frozen at 2.37 A, statas and
optimizations as a function of the reaction coordinate were 2A; are found to be connected by a transition state that belongs
carried out independently for each electronic state. The equi-to theC, point group (i.e., that presentsa axis as its unique
librium geometry was found to belong to ti&, point group symmetry element). The height of the activation energy barrier
in each case. is found to be equal to about 0.2 eV.

For moderate values of the reaction coordinate, the ground  Switching from &A; to a2A; state in the conical intersection
electronic state belongs to tR#A, representation. Its energy requires no energy barrier. It involves in principle the participa-

difficult because, in reaction 1.1b, the ionic fragmen¢@€')

V. Quantum Chemical Calculations: Electronic
Nonadiabaticity



Hydrogen Atom Loss from the Benzene Cation J. Phys. Chem. A, Vol. 110, No. 27, 2008623

tion of at least one antisymmetric bending mode apt to lower 3

the symmetry in order to pass around the cone vertex. However, crossing point
the distortion is thought to be insignificant here. Ab initio 24\

calculations carried out in th€s point group led to distortion X

angles less thar’land the attempt was not pursued. Therefore, 14

only calculations carried out in th&y, point group are reported
here.

Note finally that the ab initio results are of qualitative value ;
only at large values of the reaction coordinate. An improve- 19 .........
ment of the situation would require a better introduction ; {

v (ev)

—_— 2A2 + centrifugal potential

of the dynamic correlation energy through CAS-MP2 or 2] -,
CASSCH-MRCI calculations. 5 ---- A, + centrifugal potential
VI. Centrifugal Potential Barrier 4
I I I I I I
The most surprising and interesting experimental result is that 2 3 4 5 6, A 7 8

the benzene €H fragmentation releases more kinetic energy

than statistically expected, whereas the opposite is true for theFlgure 5. Electronic potential energy curves used in the modified

OTST model described in the text (section VI). Dotted liri&,

halogenobenzene-£X fragmentations. o electronic energy curve. Solid line: sum of th&; electronic energy
High translational energy releases are often rationalized by curve and of the centrifugal potentidl £ 60). Dashee-dotted line:
the presence of a reverse potential bafiép.36.646However, 27, electronic energy curve. Dashed line: sum of #he electronic

our ab initio calculations, those of Nicolaides et®land those ~ energy curve and of the centrifugal potentiaiH 60).
of Klippensteir® agree about the absence of any reverse barrier

of electronic origin. Furthermore, the main effect of an electronic 6+
barrier would be to shift the KERD along the kinetic energy
axis from zero by an amount corresponding to part of its

CeHg™ = CeHs™ + H
— experiment

. | . 4
height3036 This does not correspond to the experimental o | mfre'
observations (Figures 1 and 2). nlz —O— prop. to exp(-10%)

An alternative explanation involves a centrifugal barrier, as
in OTST. Since the barrier height grows as the reduced mass

of the fragments decreases, this proposal is a priori appealing 04 T T T
for the loss of a hydrogen atom. 0.0 0.2 04 €EVs
It will now be shown that, although OTST is not directly 6
applicable for a H-loss reactich,a discussion in terms of this . CoDy" = CgDs +D
theory provides useful qualitative insight into the reaction 444
mechanism. =
A modified OTST model had to be developed to account for 24
the electronically nonadiabatic nature of the reaction. Instead J
of using a long-range charge-induced dipole potential, we have 0
considered the two electronic energy curves for 2Ag and ofo sz 0f4 € (eV)ofs

s S_,tates (see _Section V), and h«_’:lve addeq to_ them theFigure 6. Solid line: experimental KERD for " — CgHs" + H
centrifugal potential(l + 1)A%2ur?, as illustrated in Figure 5. (a) and GD&* — C¢Ds* + D (b) for a fragment ion translational energy
The?A; state is described by a Morse potential, with parameters of 5 keV in the laboratory reference frame. Dashed line: prior KERDs
chosen to fit the ab initio data, and th&; potential is considered  P%¢) computed for the same total energy distributiaifg). Dotted

to be flat. Since the asymptote to which ##e state converges  line: modified OTST model developed in section VI. Solid line with
at about 1.3 e\°is not reached within our experimental energy ©Pen symbols: fit of the prior KERD witi exp(~10e).

range, the dissociating ion must switch from t#e state to
the?A; state around the crossing point, which now plays a role . o .
similar to that of the top of a barrier (see Figure 5). In this and the mO.dIerd OTST d_lstrlbutlons are then propo_r.tllonal to
modified OTST model, the probability of observing a kinetic €XPCwe) since the kinetic energy release probabilities are
energye is related to the number of channels associated with a Weighted bypuin. Figure 6 compares the functidnexp(—10e)

reverse barrier lower than Moreover, each channel is weighted with the different experimental and_thepretical K_ERDS' It
by the quantum probabilityP, of crossing the nonadiabatic ~2PPears clearly that the shape of the vibrational density of states

region along the adiabatic pathway at the kinetic energihe governs the decreasing part of the prior and modified OTST
available expression &Fis especially appropriate to study weak KERDS, but not that of the experimental one.

nonadiabatic interactions involving tunneliffg73 This argument is of qualitative value only. Clearly, however,
The resulting KERD is displayed in Figure 6, together with the larger the number of vibrational degrees of freedom of the
the prior and the experimental distributions. phenyl ion that play a role in the dynamics, the largepiand

The modified nonadiabatic OTST and prior distributions are the steeper is the decrease of the kinetic energy release
observed to decrease much more Steep|y than the experimentdﬂistribution. The fact that the actual KERD decreases less rapldly
one. Actually, this decrease is the result of the large number of than the prior or than the modified OTST KERDs indicates that
CeHs™ internal degrees of freedom, which pump nearly all the dynamical constraints tend to reduce the number of active
available energy. To illustrate this, let us assume that the densityinternal degrees of freedom.
of vibrational statespyin(Evib), iS approximately proportional It will be shown in section VII that the statistical adiabatic
to exp@E.ip):3! in the present casey ~ 10 eV 1. The prior channel model (SACM) lends itself better than OTST to the
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incorporation of the electronically nonadiabatic nature of the  Two diabatic potential energy surfaces;tnd H», and the

reaction. off-diagonal coupling elemenH;, are then defined by the
equation:

VII. An Electronically Nonadiabatic Version of SACM

H..= Hiy,O (mn=1,2 7.2
Two dynamical effects are expected to play an essential role mn = Bl 2o € ) (7:2)

for C—H cleavage in €Hs". First, in the study of the dynamics  The adiabatic potential energy surfad#Q) are obtained by
of barrierless unimolecular reactions, it is essential to partition giagonalizing the electronic Hamiltoni&n’s

the nuclear degrees of freedom between conserved and transi-

tlonal_ modes. The former remain bound dunng_ thg entire Y(Q) = [H,,(Q) + H(Q)1/2 + {[H,, (Q) — H11(Q)]2+
reaction and can be assumed to conserve their vibrational 2 12
guantum number over the entire reaction path. Transitional 4H,(Q)} (7.3)
modes, on the other hand, consist of the overall rotational

degrees of freedom plus the vibrations that eventually convert . ; . T !
9 P y the diabatic surfaces are planes (in a multidimensional space)

to a rotation or a translation of the fragments. The second that | lled Consid icul f
essential aspect, characteristic of the benzene cation, is the at cross along a so-called seam. Lonsider a particuiar relerence

already mentioned intrinsic electronically nonadiabatic nature pointQg located on the seam and take it as the zero of the energy

of the H-loss reaction. The purpose of this section is to discuss _scale. Then, the series expansion of each matrix elehight

a model that integrates both aspects in the diabatic set about poi@o can be limited to its first
To study the transformation of transitional modes as the nonzero term:

A decisive simplification obtains if it is realistic to assume that

reaction coordinate is stretched, Quack and Troe have proposed 3N-6 9H

that one should define a set of effective potential energy H.(Q) = H‘nﬁ’%(Qo) + Z @m(QO) i Xn(Qo)[h' =
curves?47 In principle, these so-called statistical adiabatic = Q, Q

channel (SAC) energy curves should result from an adiabatic IN-6

separation in which the motion along the reaction coordinate is H(O)(Q ) + HO. Q (7.4)
assumed to be determined by the average potential provided M0 J; m

by the fast motion of the other nuclear degrees of freedom.

Although the title of this section may then appear as a where the superscript in parentheses indicates the order of the
contradiction in terms, it is not. In the problem at hand, it is derivative. A system that fulfils these assumptions is said to
essential to maintain a clear distinction between electronic and obey the linear modef-7>
vibrotational nonadiabaticity. What is being looked for is a  If the nonadiabatic interaction involves two electronic states
construction of two sets of vibrotationally adiabatic channel of different symmetry, as in a conical intersection, then the zero-
energy curves calculated independently for each electronic stateorder off-diagonal matrix eIemenH(lOZ)j vanishes. For an

Electronic nonadiabaticity will then operate between compatible avoided crossingH; does not vanish and constitutes the

pairs of SACM curves (more on this later) associated with each |eading term. This circumstance is responsible for a qualitative
electronic state. In subsections VIIA and VIIB, we discuss the (ifference between the two types of interaction.

linear model used to describe the electronic nonadiabatic The two setsify, 1) and 1, y2) are related by an orthogonal

transitions and the reduction of active vibrational space that thesetransformation parametrized by an angl®).

transitions imply. How the SACM curves are constructed is then

described in subsection VIIC together with a discussion of the Y, =y, €0s6 (Q) + x, sin6 (Q)

proposed reaction mechanism and of its implications. Y, = — 1,80 (Q) + x, cosh (Q)
A. The Linear Model. The rate constant of the dissociation

reaction and the cross-section of the reverse capture proces®©ne has:

are both proportional to the probability of switching from one

electronic diabatic state to the othéA§ — 2A; or vice versa) tan[2(Q)] = 2H,(Q)/[H,4Q) — Hi(Q)]  (7.6)

(see eq 1.1a). Equivalently, both are proportional to the . ) . ) )

probability of staying in the lower adiabatic state (i.e., that of A n(_)nadlaba_nc transition can be _|nduced by a particular nu_clear

staying on the lower sheet of the double cone). motion only _|f the angle@(Q) varies along the corresponding
The theory of electronically nonadiabatic transitions is based ¢lassical trajectory?~"* It is important to note that only a

on the interplay between two possible basis sets of electronic SUPspace of the total configuration space determines the

functions. Let us consider a problem restricted to only two ransition probability, as shown explicitly in the next section.

electronic states interacting in a multidimensional vibrational  B: Dimensionality Reduction. Define three (8 — 6)

subspace spanned bl 3- 6 vibrational coordinate);, N being dimensional vectorga, EE:‘L' f;\snd&; whose components involve

the number of atoms in the system. The adiabatic set consistd€ Matrix elementsimy

of two eigenfunctions, ) of the electronic Hamiltonian

(7.5)

— @ ©
H. On the other hand, one can also consider the diabatic set Eaj = Hazj + Hij (7.78)
(1 x2), whi_ch arises from_ th_e desire to deal with functions £ =HY — HO, (7.7b)
whose physical character (ionic, covalent, Rydbergzt etc.) Bj 22} 11 '
remains unaltered as the nuclear geometry changes. Diabatic _ @

Eq = Hiz; (7.7¢)

states are required to diagonalize the nuclear momentum

matrix:’2-76 o . _
Vector &g is in fact the gradient of the energy gép, — Hix

between the two diabatic planes. If the nonadiabatic interaction
Dl Vol =0 (7.1) is the last step of a unimolecular dissociatiéajs the reaction
coordinate. Vecto&c represents the direction along which the
whereVg represents the gradient operat@vQs, ..., 3/0Qan-6). coupling matrix elemerttl;; increases most rapidly. In principle,



Hydrogen Atom Loss from the Benzene Cation

for a conical intersectiorgc is a linear combination of symmetry
lowering modes.
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at its equilibrium geometry and the orbital angular momentum
| generated by the centrifugal motion of the fragments:

Inserting eqs 7.7 into eq 7.3,
p(r) = JC(r) +[1 — C(n]I (7.12)
This contribution vanishes asymptotically. The adiabatic
potential energy curves of th&\, fragment thus obey the

leads to the equation of a double cone with its vertex at the following equation:
origin. Further substituting eqs 7.7 into eq 7.6, one obtains

U(Q) = (112X &4°Q £ [(5'Q)° + 4EcQ)YA (7.8)

Vy(rdnjl) = D1 — exp-A(r — redl}* — D, + Dy +
(N + Dhw, oo, C() + [1 — CNIB i + 1) +

2 2

Hence, for a conical intersection, only the projection of the PP+ DAH(2ur’) (7.12)
nuclear trajectory on the two-dimensional subspace spanned bywheren is the vibrational quantum number of the degenerate
the two vectorssg and&c can bring about a variation of the  CH rocking vibration,D; is the dissociation energy of tié,
angled(Q) and therefore a nonzero transition probability. state and;2 is the energy difference between the dissociation

The conclusion can thus be drawn that only a very small asymptotes of théA, and?A; states. Note that in the range of
subspace of the vibrational configuration space is important for internuclear distances where the reaction takes place, the
the calculation of the transition probability. This implies that (conserved) total angular momentuinis partitioned into two
only that part of the vibrational energy that flows into a few components: fragment rotation (quantum nurnjpeand orbital
particular degrees of freedom determines the reaction dynamicsmotion [position-dependent pseudo-quantum nungige.
at the conical intersection. The reliability of this conclusion ~ (2) Channel Energy Curves for the?A; Diabatic State.
depends of course on the validity of the linear model. In fact, The?A; diabatic state is characterized by a nearly flat potential
the dimension of the active subspace depends on the order ofnergy curve (which asymptotically defines the zero of the
the terms that have to be retained in a meaningful expansion ofenergy scale). Since the forces that derive from this potential
the matrix elementsi,{Q). Furthermore, the influence of the  are negligible, the two particles are free and their motions are
rotational degrees of freedom has been so far completely independent. The hydrogen atom travels along a rectilinear
disregarded. Thus, one is not dealing here with a strict selectiontrajectory while the phenyl ion undergoes a rotational motion.
rule, but rather with a kind of propensity rule. An impact parameteb can be defined to parametrize the

The next step consists of evaluating how the nonadiabatic position of the two moieties.
transition probability is affected by the inclusion of the  The channel energy curves can be derived from those of the
transitional degrees of freedom. 2A, potential by letting the parameters of the Morse curve

C. SACM Energy Curves for the Benzene Dissociation. (D2, D12, f, and henceo) tend to zero. The electronic
In practice, the effective SACM potential curves (also termed contribution vanishes and so does the vibrotational component
channel energies) are often obtained by an interpolation betweer(because the rocking frequency is equal to zero in a flat
the situation valid at the equilibrium position (i.e., a set of Potential). The equation of the effective potential energy curves

tan[2(Q)] = 25-Q/&s"Q (7.9)

roc

oscillators) and that valid for an infinite separation of the
fragments (i.e., a set of rotational, orbital, and translational
motions)#>4%In a barrierless reaction, the reaction dynamics is
mainly controlled by the conservation of angular momentum.
This constraint concerns essentially the transitional modes.

We now follow a previous attempt to extend SACM to
electronically nonadiabatic transitioffs.

(1) Channel Energy Curves for the2A, Diabatic State.

These effective potential energy curves are expressed as the su

of three contributions: electronic, vibrotational, and centrifugal.

(i) The electronic contribution is parametrized by the Morse
equation (as in Figure 5).

(ii) The second contribution results from an interpolation
between a nearly doubly degenerate CH rocking vibratigs
and the two-dimensional rotation of the phenyl ion fragment
characterized by its rotational constasit The interpolation
function C(r) is simply taken as an exponentf&l*6

C(r) = exp[-a(r — reg] (7.10)
wherer is the distance between the center of the phenyl ion
and the H atomreq being the equilibrium value and ~ /2,

p being the parameter of the Morse equation.

(ii) The centrifugal energy is definédlasp(p + 1)h%/(2ur?)

whereu is the reduced mass of the system ansla “rotational

thus reads simply

V,(r,J) = J(J + 1R (2ur?) (7.13)
Note in addition that even if the potential is absolutely flat, i.e.,
in the absence of any force, the linear motion of the hydrogen
atom is characterized by an angular momentum equal to
b(2ue)2. A second component to the angular momentum in
rH‘le 2A; state comes from the rotational motion of the phenyl
ion fragment.

(3) The Electronically Nonadiabatic Transition. At the
crossing point between two potential energy curves obeying the
compatibility condition defined below, a nonadiabatic transition
is possible, during which a strongly coupled system (in’the
state) suddenly decouples as it converts to4he state. To
determine the compatibility, it can be assumed that the rotational
guantum number j of the heavy phenyl ion remains conserved
during the nonadiabatic transition. It then follows quite naturally
that the second component of the angular momentum, which
results from the motion of the light hydrogen atom and which
is equal tob(2ue)2in the?A; state, converts into that deriving
from the pseudo-quantum numbgevaluated at the crossing
pointre:

bv2ue = fip(r) = JAC(r) + [1 — C(r)]lh (7.14)

pseudo-quantum number”, which, however, depends on theEffective potential energy curves in th&, state were generated

value of the reaction coordinate. It is obtained by interpolation
between the overall angular momentdrof the molecular ion

for various quantum numbensj, | andJ. The pseudo-quantum
numberp was then calculated at the point where these curves
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Figure 7. Curve crossing positions,, as a function of the pseudo-
quantum numbep, defined by eq 7.11. Full triangles:¢st — CsHs"

+ H. Open circles: €D¢" — Ce¢Dst + D. The displayed data
correspond to a representative samplingldfjj combinations. Despite
the data point dispersion, a decreaserofor increasingp clearly
emerges, especially for the undeuterated species.

crossed the liné(J + 1)h%/(2ur?). A strong correlation emerged
from these calculations (Figure 7): a large valuéafp results
in a low value ofrc. This result is of importance because the
lowerrg, the larger the value of the off-diagonal matrix element
of the electronic Hamiltoniaf1o(rc) between the two diabatic
functions and therefore the higher the transition probability. This
can be seen as follows.

For a conical intersection, the nonadiabatic transition prob-
ability can be expressed by an equation that is very similar to
the Landau-Zener formula®®-75

27H,
P=exp— 12)

huAF (7.15)

The values of the three quantitiels,, v, andAF that appear in
this equation depend on, the crossing point between the
diabatic curves. However, the off-diagonal eleméht is
expected to vary extremely rapidly with’® in contradistinction
to v and AF.

Furthermore, similar calculations have been carried out for
the fragmentation of the perdeuterated species (reaction 1.1b)
The correlation betweehandr. is still present but appears to
be less significant because the slope ofrifig curve is smaller

Gridelet et al.

attractive?A, state and the basically fl8A; state that leads to
ground-state fragments. This transition is associated with a
reduction of the dimensionality of the active vibrational con-
figuration space, thus decreasing the density of active vibrational
states and increasing the average translational energy released.

The curve-crossing mechanism that has been proposed
predicts an increase of the dissociation rate constant of the
attractive 2A, state as the final orbital angular momentum
increases, i.e., as the relative kinetic energy of the fragments
increases. Three mechanisms seem to operate in this nonadia-
batic transition.

The higher the quantum numbers of the transitional modes
[n, ], I, p(ro)], the shorter the value at at which the channel
energies cross. Hence, the higher the energy that flows into these
degrees of freedom, the larger the probability of undergoing
the electronic nonadiabatic transition between¥hgand?A;
states.

As described in section V, the transition from &#e to the
2A; state must be accompanied by a structural rearrangement
of the phenyl moiety. As a consequence, the higher the
vibrational energy deposited in the conserved modes specifically
associated with the deformation of the aromatic cycle, the higher
the probability of readjusting its geometry.

In the SACM model, just as in OTST, a high value of the
orbital quantum numbel may generate a large centrifugal
barrier that may block the reaction channel (i.e., make it unable
to participate in the kinetics). However, this is seldom the case
in practice in our model because the crossing prifietween
effective channel energy curves takes place at values of the
reaction coordinate much shorter than the position of the top
of the centrifugal barrier: the ion abandons f#e state and
switches to the flaA; potential before being influenced by
the barrier.

Once theA, to ?A; transition has been performed, the system
remains on the flaA; potential energy surface. Long-range
forces are no longer present between the receding fragments
that can be considered as separated. Vibrational or rotational
nonadiabaticity which would take place after crossing the conical
intersection can thus be excluded in the particular reaction
studied here.

The present work was only concerned with the specific case
of the GHg" ion. It seems, however, to be a common
characteristic of H-loss reactions that they release more trans-
lational energy than the statistical estim#te®® Clearly, very
few of them are electronically nonadiabatic. Alternative mech-
anisms must therefore operate. In a study of the benzylium ion
formation from the toluene catioH,it has been argued that
rotational energy flows preferentially into the reaction coordi-
nate. Rovibrational nonadiabaticity can also be expected to play

(Figure 7)..This result agrees with our experimental obgervation a role, especially for H loss reactions where the motion along
that, at a given enerdy, the translational energy release is lower he reaction coordinate becomes fast compared to the rotational
for reaction 1.1b than for reaction 1.1a (Figure 3) and is closer mgtion. As suggested by the work of Mardis and Siféthe
to the §t§1tistical expecta}tion for the perdeuterated ion. This is tyansition probability between rotational channels tends to
an additional argument in favor of the present model. increase with increasing relative translational energy. Although
not explicitly mentioned by these authors, this mechanism could
give rise to an interesting phenomenon. Transitions to lower
The C—H cleavage reaction in the benzene cation is observed rotational channels are accompanied by an increase of the
to release more translational kinetic energy on the fragmentsrelative translational energy which would in turn increase the
than expected on statistical grounds. We suggest relating thisprobability of further transitions and so on. The building of such
observation to the intrinsically nonadiabatic nature of this a constructive loop might provide a plausible mechanism for
reaction pathway. At the internal energies sampled in our electronically adiabatic hydrogen loss reactions.
experiments, only the lowest dissociation asymptote can be
reached, i.e., Hs7(*A1) + H(2S). This requires a nonadiabatic Acknowledgment. This paper is dedicated to the memory
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