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The kinetic energy release distributions (KERDs) associated with the hydrogen loss from the benzene cation
and the deuterium loss from the perdeuteriobenzene cation have been remeasured on the metastable time
scale and analyzed by the maximum entropy method. The experimental kinetic energy releases are larger
than expected statistically, in contradistinction to what has been observed for the C-X fragmentations of the
halogenobenzene cations. H(D) loss from C6H6

+ (C6D6
+) occurs via a conical intersection connecting the2A2

and 2A1 electronic states. Two models are proposed to account for the experimental data: (i) a modified
orbiting transition state theory (OTST) approach incorporating electronic nonadiabaticity; (ii) an electronically
nonadiabatic version of the statistical adiabatic channel model (SACM) of Quack and Troe. The latter approach
is found to be preferable. It leads to the conclusion that the larger the energy stored in the transitional modes,
which partly convert to the relative interfragment motion, the shorter the value of the reaction coordinate at
which the adiabatic channels cross, and the larger the probability of undergoing the2A2 f 2A1 transition
required for hydrogen loss.

I. Introduction
The unimolecular dissociation of the benzene ion into a

phenyl ion and a hydrogen atom has always been somewhat of
a mystery. The reaction presents no reverse activation barrier
and hence no obvious transition state. Its rate constant and those
of competitive pathways have received extensive attention1-19

and RRKM calculations with a tight transition state have been
found to account for the experimental H-loss data.11-13 Klip-
penstein used variational transition state theory (VTST) to model
the reaction16 and determined the electronic energy curves as a
function of the hydrogen-carbon distance.20

However, the distribution of the released translational kinetic
energy (KERD) has also been measured.7,8,21-25 Jarrold et al.8

concluded that a transition state switching model was able to
account for the rate constant but not for the KERD. Klots21 used
his version of phase space theory and reached a similar
conclusion.

Lifshitz26 generalized the problem and noticed that transla-
tional energy releases for H atom losses are usually much greater
than expected from phase space theory.8,21,27-30

It has been found by us in a previous study31 that for reactions
leading to the loss of a hydrogen atom, the orbiting transition
state theory (OTST)28,31-37 loses any validity, at least at energies
representative of mass spectrometric experimentation with sector
instruments. The reason for this failure can be traced back to
the breakdown of two essential assumptions of OTST: (i) the
ion-induced dipole approximation postulated in the Langevin
model is not valid at the transition state and (ii) the angular
and radial degrees of freedom can no longer be adiabatically
separated as the reaction is not rotationally adiabatic. Therefore,
no quantitative study based on phase space theory is possible
for hydrogen-loss reactions.

The present contribution does not focus on the rate constant,
but on the KERD for the H-loss from the benzene cation,

and for the equivalent reaction for the perdeuterated species,

One of the essential characteristics of this fragmentation is its
inherently electronic nonadiabatic nature due to the difference
in the electronic configurations of the reactant and of the product
ground states, as established by Klippenstein20 and later
confirmed by independent ab initio calculations.38 A positive
hole is located in theπ shell of the benzene ion in its ground
state, whereas theπ shell of the phenyl cation is fully occupied
in the ground state.20,38,39Such a situation necessarily leads to
a conical intersection between the two potential energy surfaces.
By a joint experimental and theoretical study, the present work
aims at relating the observed characteristics of the KERD to
the peculiar properties of the reaction, especially its electronic
nonadiabaticity.

An interesting element of appreciation results from a com-
parative study of the KERD measured for various reactions

The maximum entropy method40-42 analyzes KERDs by com-
paring them with a purely statistical distribution computed from
the density of states of the dissociation fragments. Therefore,
the same statistical distribution corresponds to all fragmentations
into a phenyl ion and an atom X. However, these dissociations
proceed in an entirely different way depending on whether X
is a hydrogen or a halogen atom. When X) I or Br, the reaction
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C6H6
+[(σCH)2π5] (2B1 or 2A2) f

C6H5
+[π6] (1A1) + H[1sH] (2S) (1.1a)

C6D6
+ f C6D5

+ + D (1.1b)

C6H5X
+ f C6H5

+ + X (1.2)
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mechanism is known to be electronically adiabatic. Furthermore,
the average translational energy release〈ε〉 is less than the
estimate〈ε〉0 derived from a purely statistical theory.43,44Finally,
it has been shown in a recent study that at low total energies,
OTST is valid when X is a halogen.31 We shall show in this
paper that the characteristics of reaction 1.2 when X) H are
radically different with respect to the following features: (i)
the reaction is electronically nonadiabatic, (ii) OTST is invalid,
and (iii) the actual average translational energy release〈ε〉 is
larger than the statistical estimate〈ε〉0.

The paper is organized as follows. The experimental technique
and the maximum entropy method are summarized in sections
II and III, respectively. The results are presented in section IV.
Section V deals with quantum ab initio calculations concerning
the electronic nonadiabaticity of the title reaction. An attempt
to incorporate the nonadiabatic mechanism in OTST is discussed
in section VI. Section VII analyzes in detail the consequences
of electronic nonadiabaticity in the framework of the statistical
adiabatic channel formalism (SACM).45-47 Concluding remarks
are formulated in section VIII.

II. Experiment

The experimental setup used to measure kinetic energy release
distributions is a forward geometry (EB) sector mass spectrom-
eter. The spectrometer includes the following: (i) an ion source
where benzene molecules are ionized by electron impact and
accelerated to keV translational energies; (ii) a first field free
region; (iii) an electrostatic sector; (iv) a second field free region;
(v) a magnetic sector; (vi) an ion detector.

The accelerating voltage scan technique makes possible to
record the parent ion spectrum of all metastable dissociations
leading to a selected fragment ion in the first field-free
region.48-50 The release of translational energy upon fragmenta-
tion broadens the recorded peaks. As instrumental broadening
also takes place, a preliminary deconvolution step is required.30

Then, a kinetic energy release distribution can be deduced from
the deconvoluted peak by a differentiation procedure and a
change of variables from the laboratory to the center-of-mass
reference frame.51-53 Angular discrimination effects are negli-
gible in the present case, so that more elaborated data
treatments54-56 are not required.

Benzene (commercially available from Merck with 99.9%
purity for C6H6, and from Aldrich with 98% purity for C6D6)
was used without further purification. In the spectrometer source,
the kinetic energy of the ionizing electrons is equal to 70 eV
and the emission current is set at 10µA. The electrostatic
analyzer exit slit (â-slit) is closed to 0.25 mm to reach an energy
resolution∆E/E of 10-3.

In this setup, dissociations are sampled in a given time
window defined by the entrance time (τ1) into, and the exit time
(τ2) out of the first field free region. Accordingly, the total
energy distribution of the parent ions is given by the following
transmission functionT(E)

whereN is a normalization factor,k(E) is the dissociation rate
constant, whose variation with internal energy is available for
C6H6

+3,4,7,9,11,12,14-17 and C6D6
+.12,14,15 R(E) is the branching

ratio for the hydrogen loss channel.11 To sample different
internal energy ranges, three translational energies of the ionic
fragment (2, 5, and 8 keV in the laboratory frame) were selected.
Average internal energies (measured from the lowest H(D)-loss
asymptote) are summarized in Table 1. The energy ranges

sampled by both isotopomers are clearly different. The ther-
mochemical dissociation threshold measured with respect to the
ground state of the neutral molecule has been taken equal to
13.03 eV for reaction 1.1a57 and to 12.98 eV for reaction 1.1b.12

III. Maximum Entropy Method

Let us denote byP(ε|E) the probability of releasing a relative
kinetic energyε on the dissociation fragments when the system
total energy is equal toE. Since the considered system is the
pair of fragments,E is measured in this paper, unless otherwise
stated, with respect to the lowest C6H5

+ + H or C6D5
+ + D

dissociation asymptote.
The maximum entropy method compares an experimental

distribution, hereP(ε|E), with the corresponding full statistical
distribution, called the prior distribution. In the field of
unimolecular dissociations, the statistical situation arises when
the ergodicity assumption of statistical theories is fulfilled: all
product quantum states are equally probable. Therefore, the prior
distribution P0(ε|E) is proportional to the density of states
corresponding to a translational energyε at a total energy
E35,40-42,58,59

whereN0(E) is a normalization factor,Fvib is the vibrational
density of states of the fragments,Frot is their rotational density
of states, and where the density of translational states for a three-
dimensional motion is proportional toε1/2.

If a dynamical constraintA(ε) prevents phase space from
being fully explored,P(ε|E) will be different fromP0(ε|E). The
distribution that accounts for this constraint but is otherwise of
maximum entropy can be related toP0(ε|E) by the following
equation40-42

whereλ0 ensures normalization andλ is the Lagrange multiplier
conjugated to the constraint. In the general formalism, a sum
of terms∑iλiA i(ε) is used in eq 3.2,41,60but in many instances,
the introduction of a single constraint has been found to be
sufficient.43,44,61-64

The distributionP̃(ε) that can be compared to the experimental
data is an average ofP(ε|E) over the total energy distribution
T(E)

Similarly, P̃0(ε) is defined as the average ofP0(ε|E) overT(E).
Equation 3.3 is then fitted to the experimental distribution in
order to obtainλ(E) andA(ε).

T(E) ) N [exp(- k(E)τ1) - exp(- k(E)τ2)]R(E) (2.1)

TABLE 1: Average Kinetic Energy Release〈E〉 and
Ergodicity Index F at the Average Energy〈E〉a

translational
energy (keV) 〈E〉 [eV] 〈ε〉(〈E〉 ) [eV] F(〈E〉) [%]

C6H5
+ + H 2 1.21 0.177( 0.005 91( 2

C6H5
+ + H 5 1.27 0.194( 0.005 87( 2

C6H5
+ + H 8 1.30 0.224( 0.007 76( 3

C6D5
+ + D 2 1.58 0.179( 0.004 96( 1

C6D5
+ + D 5 1.64 0.200( 0.005 91( 1

C6D5
+ + D 8 1.68 0.209( 0.004 90( 1

a The second column indicates the fragment ion translational energy
in the laboratory reference frame.

P0(ε|E) ) N0(E)ε1/2∫0

E-ε
Frot(Erot) Fvib(E - ε - Erot) dErot

(3.1)

P(ε|E) ) P0(ε|E) exp[-λ0(E) - λ(E) A(ε)] (3.2)

P̃(ε ) ) ∫
ε

∞
P0(ε|E) exp[- λ0(E) - λ(E) A(ε )] T(E) dE

(3.3)
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A visual way to estimateA(ε), if λ0 andλ are assumed to be
independent ofE, is to compute the average surprisal,Ĩ(ε),
resulting from the discrepancies between the experimental and
the prior distribution

and to find the functional form ofA(ε) that linearizes the
surprisalĨ(ε).61

The entropySof a distribution is directly linked to the number
of configurations that give rise to this distribution. Hence, the
prior distribution, i.e., the most statistical distribution, corre-
sponds to the maximum possible entropyS°. The entropy
deficiency DS) S° - S that represents the difference between
the prior and the actual entropies is

The entropy deficiency leads to another essential parameter: the
ergodicity index

which is an upper bound for the ratio between (i) the phase
space volume effectively explored during the reaction and (ii)
the phase space volume available for the system at the energy
E.41,65This parameter thus measures to what extent the reaction
is ergodic.

IV. Results

A. Kinetic Energy Release Distributions and Surprisal
Fits. Experimental KERDs are displayed in Figure 1 with the
corresponding prior distributions. We tried to linearize the
surprisalĨ(ε) using various powers ofε and found that the best
fit simply occurs forA(ε) ) ε as shown in the figure. This is in
contrast with nearly all previous studies,30,43,44,61,62which had
observed a constraint equal toε1/2.

Fitting the experimental data using either a constantλ or a
linear variation ofλ as a function ofE leads to nearly identical

results at the average internal energy,〈E〉, as already observed
in the analysis of the pyridine dissociation.63 The fitted value
of λ at this energy is therefore especially robust and will be
used thereafter to calculate the average kinetic energy〈ε〉 and
the ergodicity indexF. Three values ofλ have been deduced,
corresponding to the three〈E〉 values associated with experi-
ments at, respectively, 2, 5, and 8 keV (see section II and Table
1). In an alternative data treatment procedure, the KERDs
corresponding to these three energy ranges have been fitted using
a single parametric linear functionλ(E), by minimizing the sum
of their respective chi-squared,ø2. λ(E) is found to be negative
and decreasing upon increasingE. As an example, the experi-
mental (2 keV) and fitted data are compared in Figure 2.

B. Average Kinetic Energy and Ergodicity Index. Once
λ(E) has been obtained, the average translational energy release
at a given energyE can be calculated from the maximum
entropy equation:

The resulting curve is drawn in Figure 3. In addition, for each
individual measurement at a given acceleration voltage, the value
of 〈ε〉 is particularly reliable atE ) 〈E〉. Figure 3 and Table 1
provide these data. Also represented is the statistical expectation
〈ε〉0, calculated as the first moment of the prior distribution
P0(ε|E). Clearly, resulting from the negative value ofλ, the
dynamics leads to a larger translational energy release than the
statistical estimate when the released atom is either H or D.
The reverse situation is observed when X is a halogen atom.43,44

These points〈ε〉(〈E〉) are compatible with other metastable
data available in the literature,8,21-25,66 even though no precise
information is provided concerning the energy domain reached
in those experiments. The value found by Moon et al.,66 and
mentioned in Figure 3, corroborates the large increase of〈ε〉
with the total energyE.

An additional measurement has been performed on C6D6
+

by dissociative photoionization using the Ne(I) resonance line
with a retarding potential device.62-64,67,68At E ) 1.6 eV, 〈ε〉
is found to be equal to 0.20 eV, a value comparable with the
metastable data (Figure 3). Such measurements are, however,

Figure 1. Left axis, solid line: experimental KERD for C6H6
+ f

C6H5
+ + H (a) and C6D6

+ f C6D5
+ + D (b) for a fragment ion

translational energy equal to 8 keV in the laboratory reference frame.
Dashed line: prior KERD,P̃0(ε), computed for the same total energy
distribution T(E). Right axis, full circles: surprisalĨ(ε). Dotted line:
surprisal fit. Typical error bars are provided. Large uncertainties in the
surprisal at largeε result from the division by small values ofP̃(ε)
(see eq 3.4).

Figure 2. Solid line: experimental KERD for C6H6
+ f C6H5

+ + H
(a) and C6D6

+ f C6D5
+ + D (b) for a fragment ion translational energy

equal to 2 keV in the laboratory reference frame. Dashed line: prior
KERDs P̃0(ε) computed for the same total energy distributionsT(E).
Dotted line: fit to the experimental KERD using eq 3.3 withA(ε) ) ε.
Typical error bars are given at only two kinetic energies in order not
to overcrowd the figure.

〈ε〉(E) ) ∫0

E
εP0(ε|E) exp[-λ0(E) - λ(E)A(ε )] dε (4.1)

Ĩ(ε) ) ln[P̃0(ε)/P̃(ε)] ≈ λ0 + λA(ε) (3.4)

DS(E) ) ∫0

E
P(ε|E) ln [P(ε|E)/P0(ε|E)] dε )

- λ0(E) - λ(E) 〈A(ε )〉 (3.5)

F(E) ) exp[-DS(E)] (3.6)
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difficult because, in reaction 1.1b, the ionic fragment (C6D5
+)

carries only 2% of the total kinetic energy release.
In Table 1, we see that energy flows quite efficiently between

the reaction coordinate and the bath of internal oscillators: the
ergodicity index,F (eq 3.6), is equal to 75-90% for C6H6

+ at
E ∼ 1.25 eV. It even reaches 90-95% for C6D6

+ ions which
are sampled, in the metastable window, at higher energy (E ∼
1.65 eV).F is an upper bound because it is insensitive to any
restriction on phase space sampling that does not affect the
KERD (e.g., the flow of vibrational energy among oscillators).

V. Quantum Chemical Calculations: Electronic
Nonadiabaticity

There is an extensive literature dealing with the electronic
structure of the benzene cation. Most of it concerns the static
and dynamic Jahn-Teller effects that take place in the
neighborhood of the equilibrium geometry. However, the
problem that has to be dealt with here concerns the nonadiabatic
interaction that is encountered as one of the CH bonds is
stretched and only the relevant portion of the reaction path has
been studied. Complete active space self-consistent field
[CASSCF(5, 6)] calculations were carried out with a 6-31G(d)
basis set of atomic orbitals (102 basis functions). As a check,
some portions of the potential energy surfaces were recalculated
with the somewhat larger basis set 6-31G(d,p). The occupied
and unoccupied spaces consisted each of oneσ (a1) and twoπ
(b1 and a2) molecular orbitals. A total number of 210 config-
uration state functions were generated. Three low-lying elec-
tronic states (2A2, 2A1, and2B1) have been studied. Note that
Klippenstein20 focuses on the2B1 and 2A1 states. Geometry
optimizations as a function of the reaction coordinate were
carried out independently for each electronic state. The equi-
librium geometry was found to belong to theC2V point group
in each case.

For moderate values of the reaction coordinate, the ground
electronic state belongs to the2A2 representation. Its energy

increases continuously as a function of the reaction coordinate.
The aromatic cycle is nearly symmetrical in this state. The angle
R at the dehydro carbon ranges between 120 and 123°. This
ground state correlates diabatically with excited fragments,
C6H5

+ (3A2) + H (2S).
The next higher electronic state belongs to the2B1 representa-

tion. Its potential energy curve is nearly parallel to that of the
2A2 state and is consistently located slightly above it. Its
equilibrium geometry is characterized by a shortening of the
two CC bonds that are parallel to the symmetry axis, with the
angleR ranging between 124 and 125°.

At larger values of the reaction coordinate, the potential
energy curves of these two states are crossed by that of a2A1

state, whose energy is nearly constant and which diabatically
correlates with ground-state fragments, C6H5

+ (1A1) + H (2S)
(Figure 4). This type of crossing is termed a conical intersection.
In the2A1 state, the cycle deforms and adopts a geometry similar
to that of the phenyl ion fragment, with a particularly large value
for the angleR, which now ranges between 142 and 147°. The
2A2 and2A1 states were calculated to cross at a CH distance of
2.37 Å with the 6-31G(d) basis set and at 2.35 Å with the 6-31G-
(d,p) basis set. This distance is compatible with Klippenstein’s
calculations that give a CH distance of 2.25 Å at the intersection
between2B1 and2A1.20

Of prime interest in the dissociation mechanism is the conical
intersection that connects the2A2 and2A1 states. The2B1 state
plays no role in the dissociation dynamics of reaction 1.1.
However, since its energy is close to that of the2A2 state, this
quasi-degeneracy considerably complicates the ab initio calcula-
tions by creating instabilities and convergence difficulties.

When the CH distance is frozen at 2.37 Å, states2A2 and
2A1 are found to be connected by a transition state that belongs
to theC2 point group (i.e., that presents aC2 axis as its unique
symmetry element). The height of the activation energy barrier
is found to be equal to about 0.2 eV.

Switching from a2A2 to a2A1 state in the conical intersection
requires no energy barrier. It involves in principle the participa-

Figure 3. Average kinetic energy release〈ε〉(E). Full circles: C6H5
+

+ H (this work, atE ) 〈E〉 for each experimental set of data). Full
triangle: C6H5

+ + H (ref 66). Open circles: C6D5
+ + D (this work, at

E ) 〈E〉 for each experimental set of data). Open hourglass: C6D5
+ +

D (this work, atE ) 〈E〉 for the dissociative photoionization experiment
with Ne(I)). Crosses: C6H5

+ + X (X ) Cl, Br, I) (ref 43 and 44). The
dashed (reaction 1.1.a) and dash-dotted (reaction 1.1.b) lines cor-
respond to a fit with a commonλ(E) for the three internal energy ranges,
with A(ε) ) ε (see text). The solid and dotted lines represent the first
moment of the prior distribution,〈ε〉0(E), for the nondeuterated and
for the perdeuterated species, respectively.

Figure 4. CASSCF(5,6)-6-31G(d) ab initio calculations of the potential
energy curves of C6H6

+ along the C-H coordinate (C2V point group)
for the 2A2, 2B1, and 2A1 states in the region where nonadiabatic
interactions take place. Geometry optimization for the remaining
coordinates has been performed for each individual electronic state.
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tion of at least one antisymmetric bending mode apt to lower
the symmetry in order to pass around the cone vertex. However,
the distortion is thought to be insignificant here. Ab initio
calculations carried out in theCs point group led to distortion
angles less than 1°, and the attempt was not pursued. Therefore,
only calculations carried out in theC2V point group are reported
here.

Note finally that the ab initio results are of qualitative value
only at large values of the reaction coordinate. An improve-
ment of the situation would require a better introduction
of the dynamic correlation energy through CAS-MP2 or
CASSCF+MRCI calculations.

VI. Centrifugal Potential Barrier

The most surprising and interesting experimental result is that
the benzene C-H fragmentation releases more kinetic energy
than statistically expected, whereas the opposite is true for the
halogenobenzene C-X fragmentations.

High translational energy releases are often rationalized by
the presence of a reverse potential barrier.30,35,36,64,69However,
our ab initio calculations, those of Nicolaides et al.,38 and those
of Klippenstein20 agree about the absence of any reverse barrier
of electronic origin. Furthermore, the main effect of an electronic
barrier would be to shift the KERD along the kinetic energy
axis from zero by an amount corresponding to part of its
height.30,36 This does not correspond to the experimental
observations (Figures 1 and 2).

An alternative explanation involves a centrifugal barrier, as
in OTST. Since the barrier height grows as the reduced mass
of the fragments decreases, this proposal is a priori appealing
for the loss of a hydrogen atom.

It will now be shown that, although OTST is not directly
applicable for a H-loss reaction,31 a discussion in terms of this
theory provides useful qualitative insight into the reaction
mechanism.

A modified OTST model had to be developed to account for
the electronically nonadiabatic nature of the reaction. Instead
of using a long-range charge-induced dipole potential, we have
considered the two electronic energy curves for the2A2 and
2A1 states (see section V), and have added to them the
centrifugal potentiall(l + 1)p2/2µr2, as illustrated in Figure 5.
The2A2 state is described by a Morse potential, with parameters
chosen to fit the ab initio data, and the2A1 potential is considered
to be flat. Since the asymptote to which the2A2 state converges
at about 1.3 eV20 is not reached within our experimental energy
range, the dissociating ion must switch from the2A2 state to
the2A1 state around the crossing point, which now plays a role
similar to that of the top of a barrier (see Figure 5). In this
modified OTST model, the probability of observing a kinetic
energyε is related to the number of channels associated with a
reverse barrier lower thanε. Moreover, each channel is weighted
by the quantum probability,P, of crossing the nonadiabatic
region along the adiabatic pathway at the kinetic energyε. The
available expression ofP is especially appropriate to study weak
nonadiabatic interactions involving tunneling.70-73

The resulting KERD is displayed in Figure 6, together with
the prior and the experimental distributions.

The modified nonadiabatic OTST and prior distributions are
observed to decrease much more steeply than the experimental
one. Actually, this decrease is the result of the large number of
C6H5

+ internal degrees of freedom, which pump nearly all the
available energy. To illustrate this, let us assume that the density
of vibrational states,Fvib(Evib), is approximately proportional
to exp(ωEvib):31 in the present case,ω ∼ 10 eV-1. The prior

and the modified OTST distributions are then proportional to
exp(-ωε) since the kinetic energy release probabilities are
weighted byFvib. Figure 6 compares the functionA exp(-10ε)
with the different experimental and theoretical KERDs. It
appears clearly that the shape of the vibrational density of states
governs the decreasing part of the prior and modified OTST
KERDs, but not that of the experimental one.

This argument is of qualitative value only. Clearly, however,
the larger the number of vibrational degrees of freedom of the
phenyl ion that play a role in the dynamics, the larger isω and
the steeper is the decrease of the kinetic energy release
distribution. The fact that the actual KERD decreases less rapidly
than the prior or than the modified OTST KERDs indicates that
dynamical constraints tend to reduce the number of active
internal degrees of freedom.

It will be shown in section VII that the statistical adiabatic
channel model (SACM) lends itself better than OTST to the

Figure 5. Electronic potential energy curves used in the modified
OTST model described in the text (section VI). Dotted line:2A2

electronic energy curve. Solid line: sum of the2A2 electronic energy
curve and of the centrifugal potential (l ) 60). Dashed-dotted line:
2A1 electronic energy curve. Dashed line: sum of the2A1 electronic
energy curve and of the centrifugal potential (l ) 60).

Figure 6. Solid line: experimental KERD for C6H6
+ f C6H5

+ + H
(a) and C6D6

+ f C6D5
+ + D (b) for a fragment ion translational energy

of 5 keV in the laboratory reference frame. Dashed line: prior KERDs
P̃0(ε) computed for the same total energy distributionsT(E). Dotted
line: modified OTST model developed in section VI. Solid line with
open symbols: fit of the prior KERD withA exp(-10ε).
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incorporation of the electronically nonadiabatic nature of the
reaction.

VII. An Electronically Nonadiabatic Version of SACM

Two dynamical effects are expected to play an essential role
for C-H cleavage in C6H6

+. First, in the study of the dynamics
of barrierless unimolecular reactions, it is essential to partition
the nuclear degrees of freedom between conserved and transi-
tional modes. The former remain bound during the entire
reaction and can be assumed to conserve their vibrational
quantum number over the entire reaction path. Transitional
modes, on the other hand, consist of the overall rotational
degrees of freedom plus the vibrations that eventually convert
to a rotation or a translation of the fragments. The second
essential aspect, characteristic of the benzene cation, is the
already mentioned intrinsic electronically nonadiabatic nature
of the H-loss reaction. The purpose of this section is to discuss
a model that integrates both aspects.

To study the transformation of transitional modes as the
reaction coordinate is stretched, Quack and Troe have proposed
that one should define a set of effective potential energy
curves.45-47 In principle, these so-called statistical adiabatic
channel (SAC) energy curves should result from an adiabatic
separation in which the motion along the reaction coordinate is
assumed to be determined by the average potential provided
by the fast motion of the other nuclear degrees of freedom.

Although the title of this section may then appear as a
contradiction in terms, it is not. In the problem at hand, it is
essential to maintain a clear distinction between electronic and
vibrotational nonadiabaticity. What is being looked for is a
construction of two sets of vibrotationally adiabatic channel
energy curves calculated independently for each electronic state.
Electronic nonadiabaticity will then operate between compatible
pairs of SACM curves (more on this later) associated with each
electronic state. In subsections VIIA and VIIB, we discuss the
linear model used to describe the electronic nonadiabatic
transitions and the reduction of active vibrational space that these
transitions imply. How the SACM curves are constructed is then
described in subsection VIIC together with a discussion of the
proposed reaction mechanism and of its implications.

A. The Linear Model. The rate constant of the dissociation
reaction and the cross-section of the reverse capture process
are both proportional to the probability of switching from one
electronic diabatic state to the other (2A2 f 2A1 or vice versa)
(see eq 1.1a). Equivalently, both are proportional to the
probability of staying in the lower adiabatic state (i.e., that of
staying on the lower sheet of the double cone).

The theory of electronically nonadiabatic transitions is based
on the interplay between two possible basis sets of electronic
functions. Let us consider a problem restricted to only two
electronic states interacting in a multidimensional vibrational
subspace spanned by 3N - 6 vibrational coordinatesQj, N being
the number of atoms in the system. The adiabatic set consists
of two eigenfunctions (ψ1, ψ2) of the electronic Hamiltonian
H. On the other hand, one can also consider the diabatic set
(ø1, ø2), which arises from the desire to deal with functions
whose physical character (ionic, covalent, Rydberg, n-π*, etc.)
remains unaltered as the nuclear geometry changes. Diabatic
states are required to diagonalize the nuclear momentum
matrix:72-76

where∇Q represents the gradient operator (∂/∂Q1,...,∂/∂Q3N-6).

Two diabatic potential energy surfaces H11 and H22 and the
off-diagonal coupling elementH12 are then defined by the
equation:

The adiabatic potential energy surfacesU(Q) are obtained by
diagonalizing the electronic Hamiltonian73-75

A decisive simplification obtains if it is realistic to assume that
the diabatic surfaces are planes (in a multidimensional space)
that cross along a so-called seam. Consider a particular reference
pointQ0 located on the seam and take it as the zero of the energy
scale. Then, the series expansion of each matrix elementHmn

in the diabatic set about pointQ0 can be limited to its first
nonzero term:

where the superscript in parentheses indicates the order of the
derivative. A system that fulfils these assumptions is said to
obey the linear model.73-75

If the nonadiabatic interaction involves two electronic states
of different symmetry, as in a conical intersection, then the zero-
order off-diagonal matrix elementH12,j

(0) vanishes. For an
avoided crossing,H12,j

(0) does not vanish and constitutes the
leading term. This circumstance is responsible for a qualitative
difference between the two types of interaction.

The two sets (ψ1, ψ2) and (ø1, ø2) are related by an orthogonal
transformation parametrized by an angleθ(Q).

One has:

A nonadiabatic transition can be induced by a particular nuclear
motion only if the angleθ(Q) varies along the corresponding
classical trajectory.72-74 It is important to note that only a
subspace of the total configuration space determines the
transition probability, as shown explicitly in the next section.

B. Dimensionality Reduction. Define three (3N - 6)
dimensional vectorsêA, êB, andêC whose components involve
the matrix elementsHmn,j

(1) 75

Vector êB is in fact the gradient of the energy gapH22 - H11

between the two diabatic planes. If the nonadiabatic interaction
is the last step of a unimolecular dissociation,êB is the reaction
coordinate. VectorêC represents the direction along which the
coupling matrix elementH12 increases most rapidly. In principle,

〈ø1|∇Q|ø2〉 ) 0 (7.1)

Hmn ) 〈øm|H|øn〉 (m, n ) 1, 2) (7.2)

U(Q) ) [H11(Q) + H22(Q)]/2 ( {[H22 (Q) - H11(Q)]2 +

4H12(Q)2}1/2 (7.3)

Hmn(Q) ) Hmn
(0)(Q0) + ∑

j)1

3N-6〈øm(Q0)|(∂H

∂Qj
)

Q0

|øn(Q0)〉 Qj )

Hmn
(0)(Q0) + ∑

j)1

3N-6

Hmn,j
(1) Qj (7.4)

[ψ1 ) ø1 cosθ (Q) + ø2 sin θ (Q)
ψ2 ) - ø1sin θ (Q) + ø2 cosθ (Q) ] (7.5)

tan[2θ(Q)] ) 2H12(Q)/[H22(Q) - H11(Q)] (7.6)

êAj ) H22,j
(1) + H11,j

(1) (7.7a)

êBj ) H22,j
(1) - H11,j

(1) (7.7b)

êCj ) H12,j
(1) (7.7c)
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for a conical intersection,êC is a linear combination of symmetry
lowering modes.

Inserting eqs 7.7 into eq 7.3,

leads to the equation of a double cone with its vertex at the
origin. Further substituting eqs 7.7 into eq 7.6, one obtains

Hence, for a conical intersection, only the projection of the
nuclear trajectory on the two-dimensional subspace spanned by
the two vectorsêB and êC can bring about a variation of the
angleθ(Q) and therefore a nonzero transition probability.

The conclusion can thus be drawn that only a very small
subspace of the vibrational configuration space is important for
the calculation of the transition probability. This implies that
only that part of the vibrational energy that flows into a few
particular degrees of freedom determines the reaction dynamics
at the conical intersection. The reliability of this conclusion
depends of course on the validity of the linear model. In fact,
the dimension of the active subspace depends on the order of
the terms that have to be retained in a meaningful expansion of
the matrix elementsHmn(Q). Furthermore, the influence of the
rotational degrees of freedom has been so far completely
disregarded. Thus, one is not dealing here with a strict selection
rule, but rather with a kind of propensity rule.

The next step consists of evaluating how the nonadiabatic
transition probability is affected by the inclusion of the
transitional degrees of freedom.

C. SACM Energy Curves for the Benzene Dissociation.
In practice, the effective SACM potential curves (also termed
channel energies) are often obtained by an interpolation between
the situation valid at the equilibrium position (i.e., a set of
oscillators) and that valid for an infinite separation of the
fragments (i.e., a set of rotational, orbital, and translational
motions).45,46In a barrierless reaction, the reaction dynamics is
mainly controlled by the conservation of angular momentum.
This constraint concerns essentially the transitional modes.

We now follow a previous attempt to extend SACM to
electronically nonadiabatic transitions.76

(1) Channel Energy Curves for the 2A2 Diabatic State.
These effective potential energy curves are expressed as the sum
of three contributions: electronic, vibrotational, and centrifugal.

(i) The electronic contribution is parametrized by the Morse
equation (as in Figure 5).

(ii) The second contribution results from an interpolation
between a nearly doubly degenerate CH rocking vibrationνrock

and the two-dimensional rotation of the phenyl ion fragment
characterized by its rotational constantB. The interpolation
function C(r) is simply taken as an exponential45,46

where r is the distance between the center of the phenyl ion
and the H atom,req being the equilibrium value andR ≈ â/2,
â being the parameter of the Morse equation.

(iii) The centrifugal energy is defined45 asp(p + 1)h2/(2µr2)
whereµ is the reduced mass of the system andp is a “rotational
pseudo-quantum number”, which, however, depends on the
value of the reaction coordinate. It is obtained by interpolation
between the overall angular momentumJ of the molecular ion

at its equilibrium geometry and the orbital angular momentum
l generated by the centrifugal motion of the fragments:

This contribution vanishes asymptotically. The adiabatic
potential energy curves of the2A2 fragment thus obey the
following equation:

wheren is the vibrational quantum number of the degenerate
CH rocking vibration,D2 is the dissociation energy of the2A2

state andD12 is the energy difference between the dissociation
asymptotes of the2A2 and2A1 states. Note that in the range of
internuclear distances where the reaction takes place, the
(conserved) total angular momentumJp is partitioned into two
components: fragment rotation (quantum numberj), and orbital
motion [position-dependent pseudo-quantum numberp(r)].

(2) Channel Energy Curves for the 2A1 Diabatic State.
The2A1 diabatic state is characterized by a nearly flat potential
energy curve (which asymptotically defines the zero of the
energy scale). Since the forces that derive from this potential
are negligible, the two particles are free and their motions are
independent. The hydrogen atom travels along a rectilinear
trajectory while the phenyl ion undergoes a rotational motion.
An impact parameterb can be defined to parametrize the
position of the two moieties.

The channel energy curves can be derived from those of the
2A2 potential by letting the parameters of the Morse curve
(D2, D12, â, and henceR) tend to zero. The electronic
contribution vanishes and so does the vibrotational component
(because the rocking frequency is equal to zero in a flat
potential). The equation of the effective potential energy curves
thus reads simply

Note in addition that even if the potential is absolutely flat, i.e.,
in the absence of any force, the linear motion of the hydrogen
atom is characterized by an angular momentum equal to
b(2µε)1/2. A second component to the angular momentum in
the 2A1 state comes from the rotational motion of the phenyl
ion fragment.

(3) The Electronically Nonadiabatic Transition. At the
crossing point between two potential energy curves obeying the
compatibility condition defined below, a nonadiabatic transition
is possible, during which a strongly coupled system (in the2A2

state) suddenly decouples as it converts to the2A1 state. To
determine the compatibility, it can be assumed that the rotational
quantum number j of the heavy phenyl ion remains conserved
during the nonadiabatic transition. It then follows quite naturally
that the second component of the angular momentum, which
results from the motion of the light hydrogen atom and which
is equal tob(2µε)1/2 in the2A1 state, converts into that deriving
from the pseudo-quantum numberp evaluated at the crossing
point rc:

Effective potential energy curves in the2A2 state were generated
for various quantum numbersn, j, l andJ. The pseudo-quantum
numberp was then calculated at the point where these curves

p(r) ) JC(r) + [1 - C(r)]l (7.11)

V2(r,J,n,j,l) ) D2{1 - exp[-â(r - req)]}
2 - D2 + D12 +

(n + 1)hνrockC(r) + [1 - C(r)]B j(j + 1) +

p(p + 1)p2/(2µr2) (7.12)

V1(r,J) ) J(J + 1)p2/(2µr2) (7.13)

bx2µε ) pp(rc) ) JpC(rc) + [1 - C(rc)]lp (7.14)

U(Q) ) (1/2){êA‚Q ( [(êB‚Q)2 + 4(êC‚Q)2]1/2} (7.8)

tan[2θ(Q)] ) 2êC‚Q/êB‚Q (7.9)

C(r) ) exp[-R(r - req)] (7.10)
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crossed the lineJ(J + 1)h2/(2µr2). A strong correlation emerged
from these calculations (Figure 7): a large value ofl or p results
in a low value ofrc. This result is of importance because the
lower rc, the larger the value of the off-diagonal matrix element
of the electronic HamiltonianH12(rc) between the two diabatic
functions and therefore the higher the transition probability. This
can be seen as follows.

For a conical intersection, the nonadiabatic transition prob-
ability can be expressed by an equation that is very similar to
the Landau-Zener formula:73-75

The values of the three quantitiesH12, V, and∆F that appear in
this equation depend onrc, the crossing point between the
diabatic curves. However, the off-diagonal elementH12 is
expected to vary extremely rapidly withrc,76 in contradistinction
to V and∆F.

Furthermore, similar calculations have been carried out for
the fragmentation of the perdeuterated species (reaction 1.1b).
The correlation betweenl andrc is still present but appears to
be less significant because the slope of therc(l) curve is smaller
(Figure 7). This result agrees with our experimental observation
that, at a given energyE, the translational energy release is lower
for reaction 1.1b than for reaction 1.1a (Figure 3) and is closer
to the statistical expectation for the perdeuterated ion. This is
an additional argument in favor of the present model.

VIII. Summary and Concluding Remarks

The C-H cleavage reaction in the benzene cation is observed
to release more translational kinetic energy on the fragments
than expected on statistical grounds. We suggest relating this
observation to the intrinsically nonadiabatic nature of this
reaction pathway. At the internal energies sampled in our
experiments, only the lowest dissociation asymptote can be
reached, i.e., C6H5

+(1A1) + H(2S). This requires a nonadiabatic
transition involving a conical intersection between the strongly

attractive2A2 state and the basically flat2A1 state that leads to
ground-state fragments. This transition is associated with a
reduction of the dimensionality of the active vibrational con-
figuration space, thus decreasing the density of active vibrational
states and increasing the average translational energy released.

The curve-crossing mechanism that has been proposed
predicts an increase of the dissociation rate constant of the
attractive 2A2 state as the final orbital angular momentum
increases, i.e., as the relative kinetic energy of the fragments
increases. Three mechanisms seem to operate in this nonadia-
batic transition.

The higher the quantum numbers of the transitional modes
[n, j, l, p(rc)], the shorter the value ofrc at which the channel
energies cross. Hence, the higher the energy that flows into these
degrees of freedom, the larger the probability of undergoing
the electronic nonadiabatic transition between the2A2 and2A1

states.
As described in section V, the transition from the2A2 to the

2A1 state must be accompanied by a structural rearrangement
of the phenyl moiety. As a consequence, the higher the
vibrational energy deposited in the conserved modes specifically
associated with the deformation of the aromatic cycle, the higher
the probability of readjusting its geometry.

In the SACM model, just as in OTST, a high value of the
orbital quantum numberl may generate a large centrifugal
barrier that may block the reaction channel (i.e., make it unable
to participate in the kinetics). However, this is seldom the case
in practice in our model because the crossing pointrc between
effective channel energy curves takes place at values of the
reaction coordinate much shorter than the position of the top
of the centrifugal barrier: the ion abandons the2A2 state and
switches to the flat2A1 potential before being influenced by
the barrier.

Once the2A2 to 2A1 transition has been performed, the system
remains on the flat2A1 potential energy surface. Long-range
forces are no longer present between the receding fragments
that can be considered as separated. Vibrational or rotational
nonadiabaticity which would take place after crossing the conical
intersection can thus be excluded in the particular reaction
studied here.

The present work was only concerned with the specific case
of the C6H6

+ ion. It seems, however, to be a common
characteristic of H-loss reactions that they release more trans-
lational energy than the statistical estimate.26-30 Clearly, very
few of them are electronically nonadiabatic. Alternative mech-
anisms must therefore operate. In a study of the benzylium ion
formation from the toluene cation,30 it has been argued that
rotational energy flows preferentially into the reaction coordi-
nate. Rovibrational nonadiabaticity can also be expected to play
a role, especially for H loss reactions where the motion along
the reaction coordinate becomes fast compared to the rotational
motion. As suggested by the work of Mardis and Sibert,78 the
transition probability between rotational channels tends to
increase with increasing relative translational energy. Although
not explicitly mentioned by these authors, this mechanism could
give rise to an interesting phenomenon. Transitions to lower
rotational channels are accompanied by an increase of the
relative translational energy which would in turn increase the
probability of further transitions and so on. The building of such
a constructive loop might provide a plausible mechanism for
electronically adiabatic hydrogen loss reactions.
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